Phenazine-Based Anolyte Materials in Aqueous Redox Flow Batteries

Aaron Hollas, Vijayakumar Murugesan, Nadeesha Nambukara Wellala, Ruozhu Feng, Vilayanur Viswanathan, Alasdair Crawford, Ed Thomsen, Wei Wang, David Reed, Vince Sprenkle

DOE-OE Peer Review 2020
Virtual
October 1, 2020
Redox Flow Batteries (RFB)

➢ High safety
 ✷ Spatial separation of reactive materials
 ✷ Major constituent is water
 ✷ Easy thermal management.
 ✷ Battery health monitoring

➢ Easy recycling after service life
 ✷ Consumption vs. Investment

➢ Decoupling of Power and Capacity
 ✷ Tailor system to application

OE Priority
Megawatt Scale Grid Storage
Vanadium vs Organic

➢ Vanadium Redox Flow Battery (VRB)
 ◇ Current state-of-the-art, highly studied
 ◇ High material cost
 ◇ Precipitation (temperature window)

➢ Benefits of Organics vs Vanadium
 ◇ Potentially lower cost
 ◇ Tunability of material and supporting electrolyte
 ◇ Candidates with $2e^-$ redox events

New materials development to drive down cost and improve performance of flow battery systems.
Previously Reported Phenazine

- Straightforward synthesis
- High solubility (up to 1.8 M)
- Promising cell performance
 (ferrocyanide catholyte)

1.4 V Theoretical Potential

1.4 M DHPS \rightarrow 2.8 M e^-

Capacity Fade: 0.0195% / cycle, 0.68% / day
ASO Research in FY 2020

➢ Objectives
 ✷ Demonstrate ASO chemistry on prototype scale stack
 ✷ Cost modeling of ASO system
 ✷ Develop molecular-level understanding of ASO candidates to drive performance improvement

FY 2020 Milestone
Evaluate improvements to novel aqueous soluble organic flow battery on a prototype scale stack capable of meeting $250/kWh cost target for a projected 1MW/4MWh system operating at a 50% increase in current density - 150mA/cm².
Material Scalability

- Straightforward synthesis
- Hundreds of grams (to kgs) needed for demonstration
- Initial scale-up performed at 2 kg. scale

Trevor Dzwiniel & Krzysztof Pupek
Materials Engineering Research Facility (MERF)
Argonne National Laboratory
with support from DOE-Vehicle Technologies Program
ASO Demonstration at 200 cm²

1M DHPS / 1M Ferrocyanide
- 15 Wh/L at 150 mA/cm² (EE = 72.6%)
 - Average: 177 mW/cm²
- 17.5 Wh/L at 100 mA/cm² (EE = 78.3%)
 - Average: 124 mW/cm²

Ed Thomsen
ASO Demonstration at 780 cm² – 3 Cell Stack

1M DHPS / 1M Ferrocyanide
- 18.1 Wh/L at 150 mA/cm² (EE = 77.9%)
 - Average: 190 mW/cm²

Ed Thomsen
Cost Modeling of DHPS System

Cost projection based on 200 cm² cell data

Chemicals → largest share of cost, assumed cost reduction to reagent costs at high volume
Phenazine Derivatives – Long Term Stability

➢ Improving Long-Term Cyclability
 ✦ Identifying long-term instability issues
 ✦ Molecular modification to address side-reactions

Nadeesha Nambukara Wellala, Ruozhu Feng
Matthew Bliss, Prof. Navnidhi Rajput (Stony Brook U.)
New Phenazine Derivatives

- **Highly stable derivatives**
 - Multi-month cycling of 1,4-DHP
 - 0.034% capacity loss/day (galvanostatic cycling)
 - Cell voltages ~300 mV less than DHPS
 - Solubilities of 0.5-0.6 M
 - Potential improvements with electrolyte formulation
Summary

- Material performance demonstration at 780 cm² prototype stack
- Cost modeling analysis → Within 250 $/kWh cost target
- Molecular-level understanding of cyclability → new approaches to functionalization

Future Direction

- Advance the new highly-stable derivatives and investigate novel stabilizing approaches with existing system

Support

- US DOE-Office of Electricity under Dr. Imre Gyuk

This work is supported by the U.S. Department of Energy (DOE) Office of Electricity through the Energy Storage program under contract No. 57558. PNNL is operated by Battelle Memorial Institute for the DOE under contract DE-AC05-76RL01830
Thank You For Your Attention

Questions?

aaron.hollas@pnnl.gov