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Non-aqueous Flow Batteries2

Energy DensityRFB = ½nFVcellcactive

EDAQ = ½1F1.5cell2active = 1.5F 

EDMetIL = ½2F2cell3active = 6.0F Low Cost Materials Viscosity ☠☠

EDMacM = ½2F2cell0.1active = 0.2F 

EDRedTarg = ½1F3cell5active = 7.5F High Energy Density

Surface Area Kinetics ☠

Project Goal: Build a better flow battery* by targeting (1) Energy Density (2) Materials 

Cost (3) Mechanisms of Capacity Fade

*>4.4 mol e-/L according to Darling et al., Energy Environ. Sci., 2014, 7, 

3459-3477.



3 Non-aqueous Flow Batteries-Metal Coordination Complexes (MCCs)

EDMCC = ½2F2.2cell0.2active = 0.4F Low Cost Materials Crossover ☠

(1) Mun, Lee, Park, Oh, Lee, & Doo, Electrochem. Solid-State Lett., 2012, 6, A80-A82 (2) Mn, Oh, Park, Kwon, Kim, Jeong, 

Kim, & Lee, J. Electrochem. Soc., 2018, 165, A215-A219 (3) Hogue & Toghill, Curr. Op. Electrochem., 2019, 18, 37-45.

First Generation redox reactions (2.2 V)

Catholyte: Fe(Bipy)3(BF4)2 → Fe(Bipy)3(BF4)3 + e-

Anolyte:  Ni(Bipy)3(BF4)2 + 2 e-
→ Ni(Bipy)3

2.2 V

Second Generation all-iron battery 

minimizes issues with crossover and 

utilizes non-innocent ligands.

Next Generation Lower Symmetry, Higher Solubility

EDMCC = ½2F2.6cell1active = 2.6F Tunable Ligands, Wider Voltage



Second Generation Salt Study4

• Argon Glovebox, 0.5 M electrolyte, 0.2 

M MCC, PC, unsupported AEM, 10 

mA cm-2

• TEA+ is superior to TBA+

• BF4
- is a superior anion

• A by-product forms upon cycling

• Common decomposition mechanisms: 

ligand shedding and oxidative 

degradation

• Built RFBs with impure Fe(bpy)3(BF4)2

• 30 % impurity = 30% decrease in EY, 

CE, capacity

• Currently in the process of 

characterizing impurity

By-product formation 

correlates with RFB EY, CE, 

capacity loss



Tuning Bipyridine Ligands5

Electron-withdrawing

Electron-donating

More positive E1/2

More difficult to oxidize Fe(II)

Goal: produce a higher voltage symmetric RFB

More negative E1/2

Easier to oxidize Fe(II)

2.2 V

Substituent inductive effectsSamsung RFB Our complexes

Fe(II)/(III)
Movement of e- density 

with substituents

bipyridine: traditional π-

acceptor ligand



Ligand Effects on Redox Potentials6

Fe3+/2+ E1/2 (V) Fe2+/+ E1/2 (V) ΔE1/2 (V)

Fe(bpyCF3)3(BF4)2 1.65 -0.63 2.28

Fe(bpyCO2Me)3(BF4)2 1.53 -0.68 2.21

Fe(bpyBr)3(BF4)2 1.43 - -

Fe(bpy)3(BF4)2 1.25 -1.12 2.37

Fe(bpytBu)3(BF4)2 1.09 -1.19 2.28

Fe(bpyMe)3(BF4)2 1.07 -1.25 2.32

Fe(bpyOMe)3(BF4)2 0.94 1.27 2.21

Fe(bpyNH2)3(BF4)2 0.43 - -

Inductive effects change ease oxidation of Fe(II)

EWGs shifted positively by up to 0.4 V

EDGs shifted negatively by up to 0.8 V

Fe(II) and ligand-centered redox shifted together

Fe(II)/(III) ligand voltage

gap



Asymmetric 2.6 V Fe-Ni RFB7

Fe(bpyCF3)3(BF4)2 had highest catholyte E1/2 of 1.65 V (0.4 V increase, 18% increase)

Built Fe(bpyCF3)3(BF4)2/Ni(bpy)3(BF4)2 to understand stability limits of cathode

Average CE and EE: 

90.6 and 78.0 % over 20 

cycles

Catholyte showed cycling 

stability at high voltage but 

anolyte degraded (inset CV), 

resulting in capacity fade



Future Directions-what we can improve8

• Crossover is less observed in symmetric RFBs

• Ni(bpy)3(BF4)2 has poor stability as an anolyte

• Symmetric Fe(bpyR)3(BF4)2 redox couples shift together

Pseudo-symmetric RFBs may extend voltage window, show low crossover, and solve anolyte stability issue

2.94 V 3.09 V

Fe(bpyCF3)3(BF4)2/Fe(bpyOMe)3(BF4)2 Fe(bpyCF3)3(BF4)2/bpyCF3

Goal: Flow batteries are among the 3 core R&D technologies prioritized by OE, as part of their mission to 

create a resilient, reliable, and flexible electrical grid.  Towards this goal, we have learned…



9

UNIVERSITY COLLABORATORS PROJECT

Mitch Anstey Davidson College Redox molecules

Ellen Matson University of Rochester Redox molecules

Christopher Bejger UNC Charlotte Redox molecules

University Collaborations



10

Turner, N. A.; Freeman, M. B.; Pratt, H. D.; Crocket, A. E.; Jones, D. S.; Anstey, M. A.; Anderson, T. M.; Bejger. C. M.; Chem. Commun. 2020, 56, 

2739-2742.

Desymmetrized Hexasubstituted [3]radialene Anions as Aqueous Organic Catholytes

Stepwise synthesis allows for straightforward modification

• No electrolyte
• 2.5 mL/min flow rate
• Serpentine flow field
• SGL GFD carbon felt electrode

• 0.1 M electroactive species

• 25 mA charge/discharge rate
• 5 cm2 active area
• Cation Exchange membrane

Unexplored scaffolds for aqueous organic RFBs

Full Cell Studies 
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LANL: Non-aqueous Flow Battery Development

LOS ALAMOS NATIONAL LABORATORY
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o Iron Pyridylimine system 

shows potential for NARFB

o 2nd electron on ligand is 

irreversible

o Developing ROMs for 

increased stability 

Redox active Molecule Development

Membrane Development

o Anion exchange membranes developed 

for aqueous VRFB

o 100x lower Vanadium crossover than 

Nafion of similar thickness

o Performance better than or comparable 

to SOA Nafion. Long term durability under 

evaluation.
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Technical Presentations

H. Pratt, L. Small, T. Anderson “Diagnostics for failure modes in non-aqueous flow batteries” 236th ECS Meeting, Atlanta, GA, October 

13-17, 2019.

Invited Talks

H. Pratt, L. Small, T. Anderson “Elucidating failure modes in non-aqueous flow batteries” 2020 Spring MRS Meeting and Exhibit, 

Boston, MA, November 28-December 4, 2020.

Patents Issued

D. Sava Gallis, H. Pratt, T. Anderson, N. Hudak “Metal-Organic Framework Electrodes for Sodium Ion Batteries” U. S. Patent 

10,497,971, December 3, 2019.

Journal Publications

L. VanGelder, H. Pratt, T. Anderson, E. Matson “Surface functionalization of polyoxovanadium clusters: generation of highly soluble 

charge carriers for nonaqueous energy storage” Chemical Communications, October 18, 2019, vol. 55, 12247-12250, 

https://doi.org/10.1039/C9CC05380H

N. Turner, M. Freeman, H. Pratt, A. Crockett, D. Jones, M. Anstey, T. Anderson, C. Bejger “Desymmetrized hexasubstituted [3]radialene 

anions as aqueous organic catholytes for redox flow batteries” Chemical Communications, March 4, 2020, vol. 56, 2739-2742, 

https://doi.org/10.1039/C9CC08547E

Accomplishments

https://doi.org/10.1039/C9CC05380H
https://doi.org/10.1039/C9CC08547E
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