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Project Overview

Project Objectives
▪ Develop an electrothermal physics-based bottom-up model that predicts battery performance and degradation

▪ Develop a statistics-based top down model to predict battery performance and degradation, using insights from the bottom up 

model

▪ Identify the most important design and operating parameters that affect battery state of health

▪ Incorporate results into BSET to increase net benefits 

Project Relevance to US DOE-OE’s Core Mission
▪ Global physics-based model provides high-level insights, helping enhance reliability of chemistry-specific models

▪ 0-d physics-based model provides further insights into specific degradation mechanisms further strengthening model fidelity 

▪ Top Down model strengthened by Physics-Based Model findings for reliable degradation prediction using machine learning 

▪ Enhances renewables penetration in the grid by deployment of reliable battery energy storage systems

▪ Improves grid resiliency and flexibility

Project Importance
▪ Multiple degradation mechanisms have been addressed in the electrothermal model

▪ Enables reliable prediction of battery performance degradation, which is critical to deployment in the grid

▪ Enables deployment of thermal and battery management strategies to optimize battery throughput

▪ Enhances battery safety by reliable prediction of battery internal temperature under various operating conditions
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Project Metrics and Milestones

Milestones Associated Tasks

Complete thermal coupling with Multi-

Physics electrochemical model

1. Added SEI cracking and degradative effect of cathode dissolution on solid 

electrolyte interphase formation

2. Used literature parameter values for Global model for all chemistries

3. Global model for all chemistries used for selection of initial parameter 

values for single chemistry models

4. Verified approach with 0-d model

5. Validate with in-house data

Validate results with top down model and 

incorporate results of top down model 

into BSET

1. Update top down model with machine learning using in-house data for 

multiple chemistries using findings from Multi-Physics model 

2. Develop a linear model to be fed into BSET

Publish and present results

Project Metrics
▪ Model uniqueness – Global model enables high level understanding of degradation mechanism and provides input to 

single chemistry model

▪ Model reliability – predicts capacity loss with RMSE of 1% after 500 cycles

▪ Enable 10 to 20% increased increase in renewables penetration due to increased reliability Battery Energy Storage

▪ Enable safe operation of battery storage
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Challenges/Gaps

• Input parameters in the literature have a wide range

• Extracting above parameters by optimization results in multiple combinations

• Use combination of global model, chemistry-specific model and 0d model to overcome above limitation

• Computational time massive bottleneck for complicated models – need to identify most 
important mechanisms/interactions to model and most important parameters to 
optimize

• Not all degradation mechanisms considered

▪Solid electrolyte interphase (SEI) formation

▪SEI layer fracture

▪ Lithium plating

oOverestimates SEI formation

▪Graphite stress-related cracking 

▪Cathode dissolution and its effect on SEI formation rate

▪Thermal coupling with all of above degradation mechanisms included
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Electrothermal 
Model
• Modeling uses COMSOL finite 

element analysis software

• Newman’s pseudo 2d model 
is foundation

• Degradation mechanisms 
modeled include

▪ Li lost to SEI layer formation 
(uncracked and cracked)

▪ Cathode dissolution

▪ Graphite lost to mechanical 
stress

• Modeled heat generation and 
its interaction with the 
chemistry



Electrolyte
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SEI Formation

• SEI (solid electrolyte interphase) Layer 
formation is primary mechanism of 
capacity loss, lithium at the anode reacts 
with solvent to produce SEI. Capacity is 
lost from loss of lithium to SEI and 
increased internal resistance from SEI.

• Diffusion through SEI layer limits rate of 
SEI formation

• Graphite expands and contracts while 
charging and discharging, this cracks the 
SEI layer and speeds up formation

• Nickel dissolved in the cathode makes its 
way over and speeds up reaction

Graphite

SEI Layer

Li+ Li+

e-
e-

New SEI

Solvent
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• Literature values for electrochemical 
parameters such as SEI formation 
current density, overpotential, solvent 
diffusion through SEI layer, SEI 
cracking rate, all vary over several 
orders of magnitude in literature – so 
we optimize to fit data. This allows us 
to get a good fit

Model Validation 
Individual 
Chemistries

Capacity degradation data and model 
for cells doing peak shaving from 80-
60% SOC (20% DOD) and 80-20% SOC 
(60% DOD)

NMC1

NMC2
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• Most models in literature use previous 
approach to fit one chemistry at a time 
– however since all chemistries have 
the same graphite anode, they should 
have the same graphite 
electrochemical parameters. 

• Run optimization with this requirement. 
Cathode dissolution potential and 
effect of dissolved nickel stays the 
same but each chemistry has its own 
cathode dissolution rate.

• Fit is worse and shows room for 
improvement

Model Validation All 
Chemistries

Capacity degradation data and model 
for cells doing peak shaving from 80-
60% SOC (20% DOD) and 80-20% SOC 
(60% DOD)

NMC1

NMC2
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• COMSOL model takes 1 hour per iteration – can 
take weeks to test hypothesises especially with 
high dimensional optimization. 

• Build simplified 0D model – model electrochemical 
reactions very simply, ignore current distribution 
over thickness, heat generation, concentration 
inside particle. Calculate lithium lost. This gives a 
model that can simulate peak shaving test in 1 
second instead of 1 hour – thousands of times 
faster

• Use the all chemistries approach – same graphite 
parameters - to see if our approach in COMSOL is 
mathematically feasible

• We can get a good fit with this model – suggests 
bottleneck with COMSOL model is computational 
time from model complexity.

Model Validation 0D

Capacity degradation data and model 
for cells doing peak shaving from 80-
60% SOC (20% DOD) and 80-20% SOC 
(60% DOD)

NMC1

NMC2
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Top Down Modeling

• Several duty cycles were performed in house – baseline, peak shaving, frequency 
regulation, electric vehicle. Each service performed at various SOC and DOD. 3 cells per 
experiment. Total of 13 duty cycles over 4 chemistries with 3 cells each, 156 cells.

• A statistical model was built to predict battery performance based on its history – current, 
voltage, and interaction

• Model was evaluated based on out of sample error

• Insights from the bottom up model such as SEI cracking were incorporated

`

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

For this cycle, build model on 

this data to predict this performance

…and repeat for each cycle

𝑑𝐶𝑎𝑝𝑙𝑜𝑠𝑠

𝑑𝑡
= 𝑓 𝑉, 𝐼, 𝑆𝑂𝐶
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Top Down Modeling Results

• Final model:

• Model evaluated predicting 60 through 
300 cycles ahead

• Tested both multilinear regression and 
elasticnet algorithm – reduced RMSE by 
1/3 with elasticnet suggesting overfitting 
issues

𝑑𝐶𝑎𝑝𝑙𝑜𝑠𝑠

𝑑𝑡
~ 𝐼 + 𝐼2 × 𝑉 + 𝑉2 + 𝑉3 + 𝐼

𝑑𝑣𝑜𝑙

𝑑𝑐𝐿𝑖
𝑆𝑂𝐶 + 𝐼

𝑑2𝑣𝑜𝑙

𝑑𝑐𝐿𝑖
2 𝑆𝑂𝐶

Cubic in voltage

Quadratic in current

Interaction with current 

and rate of graphite 

expansion
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Top Down Modeling EPRI Collaboration

• EPRI Collaboration – EPRI shares 
standardized data from ESS and 
analysis techniques and insight, PNNL 
produces predictive capacity 
degradation models

• ESS included both Li-Ion and flow 
system

• Very similar methodology – use 
battery’s history to predict its 
performance in future cycles

• Challenge - harder to evaluate ESS 
performance vs single cell 
performance. Degradation still 
detected.

Mean and RMS out of sample error for 

predicting an Li Ion System performance 

using various techniques
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Looking Forward

Research Accomplishments:

▪ Reliable battery state of health model developed for single cell (one pair of electrode)

▪ Incorporates various degradation mechanisms

Next Steps:

▪ Determine effect of plated lithium on tortuosity of SEI layer and electronic percolation within SEI layer

▪ How does this affect SEI formation rate?

▪ Model pouch (multi-electrode cell) and cylindrical cells

▪ Model multi-cell modules 

▪ Use tertiary current distribution to get mass transfer related effects

▪ Use measurable parameters alone for Top Down Model

▪ Apply 0d model to more duty cycles
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