Oak Ridge National Laboratory Energy Storage Program

Michael Starke, PhD
Electric Energy Systems Integration Group
Oak Ridge National Laboratory
Energy Storage Research

Oak Ridge Core Thrusts
- Materials
- Advanced Manufacturing
- Computation and Analytics
- Systems and Systems Integration

Interdisciplinary R&D
- New Battery Technology
- Systems Integration
- Low Cost Energy Storage

DOE Energy Storage Program
- Cost Competitive
- Validated Safety and Reliability
- Industry Acceptance
- Equitable Regulatory Environment

Energy Storage + System Integration Technologies
Energy Storage System Technologies

Systems

Energy Storage System

Stack

Thermal Management

Battery Management Systems

Subsystems

Cathode, Anode Aqueous/Nonaqueous chemistries

Interfaces & Packaging, Passive Elements, Active Elements

Logic Controllers, Thermocouples Auxiliary Circuits Balancing Circuits Analytics

Components

ORNL Research Going Forward
Systems Integration of Energy Storage Technologies

Systems

Application Specific Grid Interfacing System

Subsystems

- **Power Stage**
 - Semiconductor Devices, Capacitors, Inductors & Transformers

- **Control & Protection**
 - Logic Controllers, Current & Voltage Sensors, Contactors, Circuit Breakers & Fuses, Auxiliary Circuits

- **Thermal Management**
 - Interfaces & Packaging, Passive Elements, Active Elements

- **Interface Integration**
 - Agent Systems, Communication Interfaces, Computational Platform, State Machines

Components

- ORNL Research (low -> high TRL)
Energy Storage Projects Under DOE OE Energy Storage Program

Cost Competitive
- **Flow Battery:** Low Cost Membranes for High Energy Density Non-aqueous Redox Flow Batteries
 - Jagjit Nanda

Industry Acceptance
- **Systems Integration:** Secondary Use Development of a Battery Chemistry Agnostic Secondary Use Energy Storage System
 - Michael Starke

Validated Safety and Reliability
- **Establishing Safety Database:** Establishing Thermal Runaway Risk Test Protocols and Database – An ORNL and SNL Collaborative Research on Battery Safety
 - Hsin Wang

Equitable Regulatory Environment
- **Advanced Manufacturing:** Low-Cost, Durable Electrochemical Energy Storage for Electricity Grid Applications
 - David Wood

Metals Air Batteries: Development of Components and Cell Architectures for High Performance 'Open' Batteries for Grid Applications
- Tom Zawadinski

Compressed Air Hybrid: A near-isothermal-isobaric compressed gas energy storage combined with ground-level pumped-hydro storage
- Ayyoub Momen

New Grid Interconnections: Direct-Tied Medium Voltage Energy Storage System Development
- Madhu Chinthavali

FY20: $2.5M: 7 Projects
Energy Storage Projects Under DOE OE Energy Storage Program

Cost Competitive

- Sodium-Ion Based Flow Battery: Low Cost Membranes for High Energy Density Non-aqueous Redox Flow Batteries
 - Jagjit Nanda

- Sodium and Potassium Battery: Low Cost Anode and Electrolyte Materials
 - Ilias Belharouak

- Metal Air Batteries: Development Of Components and Cell Architectures for High Performance ‘Open’ Batteries for Grid Applications
 - Tom Zawadinski

Industry Acceptance

 - Michael Starke

- New Grid Interconnections: Direct-Tied Medium Voltage Energy Storage System Development
 - Madhu Chinthavali

- Simulation: Cell modeling of secondary use systems to understand life impacts following primary application
 - Sritkanth Allu

Validated Safety and Reliability

- Establishing Safety Database: Establishing Thermal Runaway Risk Test Protocols and Database – An ORNL and SNL Collaborative Research on Battery Safety
 - Hsin Wang

- New Sensing Concepts: Development of new paint that off gases with temperature
 - Hsin Wang

Equitable Regulatory Environment

- Advanced Manufacturing: Low-Cost, Durable Electrochemical Energy Storage for Electricity Grid Applications
 - David Wood

GOING INTO FY21: $2.5M: 9 Projects
Program Output

Conference Papers: 4
Journals: 11
Intellectual Property: 3
GRID-C Facility Crosscutting Research

Vision: accelerate the transition and deployment of early stage components to systems R&D to enable autonomous operation of the grid

Cyber Security Research (DarkNet)
Secure, resilient communications architecture for the grid.

Grid Operations Analytics Laboratory
Cyber-physical security, sensors, modeling, and data analytics test bed simulating a control room operation.

Battery Manufacturing Facility
Open-access DOE lab featuring materials synthesis, scale-up, roll-to-roll manufacturing, and prototyping vehicle and grid-level battery systems.

Advanced Component Development Lab
Sensors R&D platform, High voltage Semiconductors packaging and process development.

1+ MW Hybrid AC-DC 480V, 1.5 kV Grid Network
Future Substation, network of Micro grids
All power electronics grid research, Distributed energy resources, and energy storage, HIL platforms

Advanced High voltage Component Characterization Lab
High voltage component evaluation and transmission and sub-transmission scale PE-HIL test beds

Electric Drive train Evaluation Facility
Open-access DOE lab for LD, MD, HD vehicle drivetrain evaluation

240/120 V Scale Grid
Home and neighborhood emulation, transactive controls, and grid integration test beds.

Medium Voltage Distribution Scale Grid
Medium voltage PE interfaces, MV DC test beds

Extreme-fast Charging
Extreme-fast wired and wireless vehicle charging ecosystem and grid integration test bed.

Vision:

- Accelerate the transition and deployment of early stage components to systems R&D to enable autonomous operation of the grid.
Acknowledgements

This work is supported by Dr. Imre Gyuk, Manager, Energy Storage Program, Office of Electricity, Department of Energy.