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Project Overview: Motivation for Propagation Testing
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Objective
Reduce the risk of failure propagation with  
active cooling following a model-based  
experimental design
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Alignment with Core Mission of DOE OE

OE drives electric grid modernization and resiliency in the energy infrastructure. Validated safety and

reliability are paramount to achieve that target. The identification of mitigation strategies to reduce

the risk of propagation move us further in that direction.
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Project Objectives

Objective #1 – Modeling

Investigate the effect of active cooling on heat transfer and  
provide a model-based experimental design

Objective #2 – Experimental

Reduce the risk of cell-to-cell propagation in multi-cells packs  
and multi-module battery systems
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Project Previous Work: Passive Mitigation of Failure Propagation
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• The impact of heat-absorbing metal plates between cells on cascading propagation was investigated.

• The plates provided an additional thermal mass to dissipate heat release, hence reducing the risk of propagation.

• Thicker plates completely mitigated propagation, while partial propagation was achieved for the pack with 1.6

mm plates.

• Thinner plates did not prevent cascading propagation, but they significantly reduced the overall heat release rate  

and slow propagation across the stack.

L. Torres-Castro, A. Kurzawski, J. Hewson, J. Lamb, “Passive mitigation of cascading propagation in multi-cell lithium ion batteries,” Journal of the Electrochemical Society, vol. 167, 2020
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Measurements are reality but simulations allows us to better understand the behavior changes and  

explore boundaries between mitigation/cascading failure
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Objective #1 – Develop a model-based experimental design of promising pack configurations

Project Results: Predicting Thermal Runaway
by Randy Shurtz

Large-scale testing is costly and simulations allow exploration of the design space if well grounded in reality

Space Crossing + Cell Crossing

Difference between heat out of last cell and heat out of plate
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Objective #1 – Develop a model-based experimental design of promising pack configurations

Project Results: Predicting Thermal Runaway
By Randy Shurtz

Effect of insulator thickness on the heat out of the battery pack

Water cooling increases decay rate of tails, indicating more heat  

transfer out of the stack
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Objective #1 – Develop a model-based experimental design of promising pack configurations

Project Results: Predicting Thermal Runaway
By Randy Shurtz

Effect of insulator thickness on the heat out of the battery pack

Water cooling increases decay rate of tails, indicating more heat  

transfer out of the stack
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Project Results: Experimental Design

Al plate

Pouch cell

Test apparatus
by Chris Grosso
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Objective  #2 – Investigate the effect of  
active cooling in the heat transfer

Project Results: Temperature Profile
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Objective  #2 – Investigate the effect of  
active cooling in the heat transfer

Project Results: Temperature Profile
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Objective  #2 – Investigate the effect of  
active cooling in the heat transfer

Project Results: Temperature Profile
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Objective #2 – Investigate the effect of active cooling in the heat transfer

Project Results: Hypothetical Adjacent Module Temperature Exposure

• The hypothetical adjacent module will be exposed to temperatures nearly  

identical when using 0.4mm G10/Water or 1.6mm G10/no water

• Thicker insulators and the inclusion of water reduces the risk of failure  

propagation

The elapsed time at the max. temperature further demonstrates that adding 

thermal mass slows down the heat transfer to the hypothetical adjacent module
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Objective #2 – Investigate the effect of active cooling on the onset threshold to thermal runaway

Project Results: Overcharge Behavior with Air and Water Cooling

For SOCs >175%

✓ Baseline - faster self-heating and an earlier onset SOC to thermal runaway

✓ Plates - slower self-heating with maximum temperatures ~500°C

✓ Plates/Water - No thermal runaway

100 120 200 220

0

100

200

300

400

500

600

140 160 180

State of Charge, %

T
em

p
er

a
tu

re
,
°C

TC3 Voltage

TC3 Voltage

TC3

Baseline 

TC8

Plates 

TC8

Plates/Water 

TC8 Voltage

0

1

2

3

4

5

6

7

C
el

l 
V

o
lt

a
g
e,

V

160 165 195 200

0

20

40

60

80

T
em

p
er

a
tu

re
,
°C

170 175 180 185 190

State of Charge , %

0

100 7

1

2

3

4

5

6

C
el

l 
V

o
lt

a
g
e,

V



PUBLICATIONS AND PRESENTATIONS17

Presentations

• Investigations of the Structural and Electrochemical Properties of Overheated
Li-Ion Batteries and Its Effects in Single Cells Vs. Multi-Cells Packs; 236th ECS
Meeting; Atlanta, GA; October 2019

• Analyzing the Effects of Lithium Plating on the Safety Performance of Lithium-
Ion Batteries; 236th ECS Meeting; Atlanta, GA; October 2019

• Recent Progress in Alkaline Zn/MnO2 Batteries; NAATBatt International
Workshop on Zinc Battery Technology II; New York, NY; November 2019

• Understanding the factors impacting battery failure propagation and its
mitigation; Materials Research Society Fall Meeting; Boston, MA; December
2019.

• Battery safety; Public Safety Workshop, Case Western Reserve University;
February 2020.

• Impact of energy density on thermal runaway; Energy Storage Systems Safety
& Reliability; Richland, WA; March 2020.

• Understanding the factors impacting battery failure propagation and its
mitigation; Energy Storage Systems Safety & Reliability Forum; Richland, WA;
March 2020.

• Accelerating rate calorimetry of large format cells; International Battery
Seminar; Virtual Meeting; July 2020

Publications

•L. Torres-Castro, A. Kurzawski, J. Hewson, J. Lamb, “Passive mitigation of cascading
propagation in multi-cell lithium ion batteries,” Journal of the Electrochemical Society, vol.
167, 2020

•D.M. Rosewater, J. Lamb, J.C. Hewson, V. Viswanathan, M. Paiss, D. Choi, A. Jaiswal “Grid- scale
Energy Storage Hazard Analysis & Design Objectives for System Safety” Report prepared for
Arizona Public Service, SAND2020-9360, August 2020

•A. Kurzawski, L. Torres-Castro, R. Shurtz, J. Lamb, J. Hewson, “Predicting cell-to-cell failure
propagation and limits of propagation in lithium-ion cell stacks” Proceedings of the
Combustion Institute (accepted)

•J. Lamb, L. Torres-Castro, J. Hewson, R. Shurtz, Y. Preger, C. Orendorff, “The role of energy
density in lithium-ion battery thermal runaway” (in preparation)

•J. Obert, L. Torres-Castro, Y. Preger, R. Trevizan, “Ensemble learning, prediction and Li-ion cell
charging cycle divergence” (in preparation)

•Y. Preger, L. Torres-Castro, J. Langendorf, J. Lamb, C. Orendorff, B. Chamalala, “Review of the
safety of aged lithium-ion batteries as a function of aging protocol and abuse method” (in
preparation)

•L. Torres-Castro, E. Deichmann, J. Lamb, J. Langendorf, S. Ferreira, S. Ivanov, M. Dubarry, A.
Pimentel, M. Rodriguez, J. Kustas, B. Juba, “Investigations of the Electrochemical and Material
Properties of Overcharged Li-ion Batteries” (in preparation)

•J. Stanley, L. Torres-Castro, J. Lamb, H. Wang, “Standardizing Li-ion pouch cell tests to aid in
thermal runaway predictions using machine learning” (in preparation)
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Collaborations

ORNL-
Establishing  

thermal runaway  
risk test  

protocols and  
database

NITE – Reliable  
and Repeatable  
Failure Initiation  

Techniques

Project #1

• Failure mechanisms of lithium-ion batteries up to thermal runaway  
(continuation)

Project #2
• Understanding and mitigating cascading propagation (continuation)

Project #3

• Off-gassing analysis of lithium ion batteries during thermal runaway as a
function of chemistry and state of health
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For further details on experimental work, see the following posters:

• Predicting Thermal Responses for Actively Cooled Designs Following Thermal Runaway

• Materials characterization of abused cells

• ARC of Large Format Cells

• NITE Collaboration
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