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Overview of Thermal Runaway Modeling2

SIGNIFICANCE: 

o Heat source terms in legacy thermal runaway models have limitations 

➢ Outdated with respect to current battery materials

➢ Designed for low-temperature onset rather than high-temperature propagation

o Models should be designed to keep pace with deployment of  new materials

➢ Transition from empirical approaches to materials-centric approaches

➢ Gain ability to forecast safety characteristics in the early stages of  materials selection

ALIGNMENT WITH CORE MISSION OF DOE OE: 

o Validated safety and reliability is one of  the critical challenges identified in 2013 Grid 

Energy Storage Strategic Plan
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Thermal Runaway Modeling Objectives 4

Predict thermal runaway behavior in large systems (multi-cell)

o 1 publication accepted in FY2020

Develop improved heat-source models for thermal runaway

o Include proper dependence on material properties, temperature, state of  charge

o Extend to additional electrode materials of  commercial interest

o 1 publication accepted and 1 additional publication submitted in FY2020

Promote effective methods and collaboration in thermal runaway studies

o Publish perspectives, models, and tools

➢ Thermodynamic reaction heat calculator for cathode decomposition posted online in FY2020

o Set up thermal runaway collaboration workshops (task for full project team)
Experimental 

Group #1

Experimental 

Group #2

Modeling 

Group

Enhance Flow of Data and Insights



Motivation: Why Study Thermodynamics of Battery Materials?

Variants of  layered metal oxide cathodes too numerous for full experimental safety evaluation

Materials science/thermodynamic approach allows predictions of:

◦ Whether a decomposition reaction can occur

◦ How much heat release can be expected under different conditions

Heat sources from thermodynamics are readily adapted to new materials

◦ Can account for multiple stages of  heat release

◦ May also allow kinetic rates in thermal runaway models to be generalized for families of  materials
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Results: Thermodynamics of Cathode Thermal Runaway6

Layered metal oxide cathode decomposition

• Published database of  36 formation enthalpies compiled 

from over 42 literature sources for cathode materials

• Yields up-front predictions of  heat release for a whole class 

of  LixMO2 cathode materials with electrolytes

• Existing or proposed compositions

• Excel-based calculator released online

• Simplified web calculator under development
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Decomposition paths 

for de-lithiated LixMO2

R. C. Shurtz and J. C. Hewson, J. Electrochem. Soc., 167, 090543 (2020)    https://dx.doi.org/10.1149/1945-7111/ab8fd9

R. C. Shurtz. "Thermodynamic Reaction Heat Calculator for Layered Metal Oxide Cathodes in Organic Electrolytes." 

https://www.sandia.gov/ess-ssl/thermodynamic-web-calculator/

https://dx.doi.org/10.1149/1945-7111/ab8fd9
https://www.sandia.gov/ess-ssl/thermodynamic-web-calculator/


Results: Thermodynamics of Solvent Oxidation

Solvent oxidation has strong effects on 
◦ Cathode heat release 

◦ Gas emissions from decomposing batteries

Contributions to ΔG include
◦ Enthalpy (heat release, solid lines)

➢Favors full oxidation

◦ Entropy term (dashed lines)

➢Favors more gas generation through partial oxidation

➢Bigger impact at high temperature
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R. C. Shurtz and J. C. Hewson, J. Electrochem. Soc., 167, 090543 (2020)    https://dx.doi.org/10.1149/1945-7111/ab8fd9

Spontaneous processes have negative ΔG

ΔG = ΔH -TΔS

Full EMC Oxidation: 
2 C4H8O3 + 9 O2 → 8 CO2 + 8 H2O

Partial EMC Oxidation: 
2 C4H8O3 + 2 O2 → 2 CO2 + 6 CO + 8H2

https://dx.doi.org/10.1149/1945-7111/ab8fd9


Results: Effect of Pressure on Solvent Decomposition8

R. C. Shurtz and J. C. Hewson, J. Electrochem. Soc., 167, 090543 (2020)    https://dx.doi.org/10.1149/1945-7111/ab8fd9

Full EMC Oxidation: 2 C4H8O3 + 9 O2 → 8 CO2 + 8 H2O

Partial EMC Oxidation: 2 C4H8O3 + 2 O2 → 2 CO2 + 6 CO + 8H2

Entropy contribution is stronger at low pressures
◦ Cell venting pressure expected to affect gaseous 

product distribution and heat release

Weaker confinement in pouch cells compared to 
cylindrical cells may lead to more partial oxidation

◦ Partial oxidation leads to explosive mixtures

➢Higher production rates of  CO and H2

ΔG = ΔH -TΔS

https://dx.doi.org/10.1149/1945-7111/ab8fd9


Results: Combined Effects of Metal Oxide Decomposition 
with Solvent
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R. C. Shurtz and J. C. Hewson, J. Electrochem. Soc., 167, 090543 (2020)    https://dx.doi.org/10.1149/1945-7111/ab8fd9

Pressure

ΔG Full 

Oxidation

kJ/mol O2

ΔG Partial 

Oxidation

kJ/mol O2

1 atm -479 -551

20 atm -470 -468

Minimal pressure dependence for 
production of  MO

◦ ΔG increases by 12 kJ/mol O2 at 20 atm

ΔG = ΔH -TΔS

https://dx.doi.org/10.1149/1945-7111/ab8fd9


Results: Combined Effects of Metal Oxide Decomposition 
with Solvent
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R. C. Shurtz and J. C. Hewson, J. Electrochem. Soc., 167, 090543 (2020)    https://dx.doi.org/10.1149/1945-7111/ab8fd9

Pressure

ΔG Full 

Oxidation

kJ/mol O2

ΔG Partial 

Oxidation

kJ/mol O2

1 atm -479 -551

20 atm -470 -468

Minimal pressure dependence for 
production of  MO

◦ ΔG increases by 12 kJ/mol O2 at 20 atm

ΔG for common cathodes:

◦ NCA = -48 kJ/mol O2 at 1 atm 

◦ LCO = -9 kJ/mol O2 at 1 atm

◦ NMC = +14 kJ/mol O2 at 1 atm

NMC requires solvent oxidation to 
complete MO formation

◦ Provides explanation for existing 
measurements of  heated oxide species

ΔG = ΔH -TΔS

https://dx.doi.org/10.1149/1945-7111/ab8fd9
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Results: Full-Oxidation Predictions Consistent with Calorimetry 11

Example: LixNi0.33Mn0.33Co0.33O2 (NMC 1:1:1)

R. C. Shurtz, "A Thermodynamic Reassessment of Lithium-Ion Battery Cathode Calorimetry " J. Electrochem. Soc., (submitted September 2020).
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Results: Full-Oxidation Predictions Consistent with Calorimetry 12

Example: LixNi0.33Mn0.33Co0.33O2 (NMC 1:1:1)

R9 (red line) produces dual-spinel mixture

• Residual MO2 → M3O4 (R2 follows R4)

R. C. Shurtz, "A Thermodynamic Reassessment of Lithium-Ion Battery Cathode Calorimetry " J. Electrochem. Soc., (submitted September 2020).
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Results: Full-Oxidation Predictions Consistent with Calorimetry 13

Example: LixNi0.33Mn0.33Co0.33O2 (NMC 1:1:1)

R9 (red line) produces dual-spinel mixture

• Residual MO2 → M3O4 (R2 follows R4)

R1 (orange line) is production of  MO rock salt

• Most common final product

➢ Lower maximum temperature or minimal solvent will limit 

reactions and reduce measured heat (red triangles)
R. C. Shurtz, "A Thermodynamic Reassessment of Lithium-Ion Battery Cathode Calorimetry " J. Electrochem. Soc., (submitted September 2020).
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Results: Full-Oxidation Predictions Consistent with Calorimetry 

136 total calorimetry measurements compiled from 28 
articles for LCO, NMC, and NCA

◦ Explains variability observed with state of  charge

➢SOC proportional to 1-x

◦ High pressure in calorimetry containers favors full 
oxidation of  solvent
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Example: LixNi0.33Mn0.33Co0.33O2 (NMC 1:1:1)

R9 (red line) produces dual-spinel mixture

• Residual MO2 → M3O4 (R2 follows R4)

R1 (orange line) is production of  MO rock salt

• Most common final product

➢ Lower maximum temperature or minimal solvent will limit 

reactions and reduce measured heat (red triangles)
R. C. Shurtz, "A Thermodynamic Reassessment of Lithium-Ion Battery Cathode Calorimetry " J. Electrochem. Soc., (submitted September 2020).



Results: Effects of Metal Oxide Composition and SOC15

Similarities and differences in cathode 
decomposition mechanisms identified 
from thermodynamic analysis

◦ Verified through calorimetry and 
species measurements from literature

Common M atoms in LixMO2

◦ Ni (high energy)

◦ Co (crystallographic stability)

◦ Mn or Al (strong O-atom binding)

Some steps change with composition

Simpler mechanism at low SOC

R. C. Shurtz and J. C. Hewson, J. Electrochem. Soc., 167, 090543 (2020)    https://dx.doi.org/10.1149/1945-7111/ab8fd9

R. C. Shurtz, "A Thermodynamic Reassessment of Lithium-Ion Battery Cathode Calorimetry " J. Electrochem. Soc., (submitted September 2020).

https://dx.doi.org/10.1149/1945-7111/ab8fd9


Results: Modeling Short Circuits in Tandem with Thermal Runaway

Materials science perspective applied to short-
circuit ignition of  thermal runaway yields 
predictive insights

Short circuits and thermal decomposition 
compete for same reactants
◦ Thermal decomposition more energetic

◦ Thermal decomposition faster once ignited

◦ Depletion of  solvent can limit either process

Series resistances specify rate and distribution of  
heat release from short circuit
◦ Fraction of  total resistance specifies heat release 

in nail versus cell 
➢Concentrating heat release in nail yields faster ignition

Voltage and hence short circuit rate calculated 
from limiting reactive electrode material 

16

CoO2 + LiC6 → LiCoO2 + C6

2LiC6 + EC → 2C6 + C2H4 + Li2CO3

2CoO2 → 2CoO + O2 (plus solvent oxidation)

(consumes CoO2 + LiC6 + solvent)

1 sec                4 sec              8 sec               61 sec



Results: Modeling Ignition from Nail Penetration in Pouch Cells

Identified effects of  short circuit geometry and location

◦ Central heat release yields sharp peak in cell surface temperature

◦ Off-center heat release slows rise to final temperature

➢Makes internal propagation limiting (see previous slide)

Total temperature rise can be limited by

◦ Quantity of  electrolyte 

◦ High short-circuit resistance

➢Slower short circuit competes poorly with thermal runaway

17

Resistance variation

Legend for plot:

---- , ---- = measured cell surface temperature

- - - - - = baseline simulation

• • • • = ½ resistance 

--• --•   = 2x resistance



Looking Forward

Cathode Decomposition Modeling

◦ Develop and publish new kinetic models for thermal runaway in LixMO2 cathodes

➢Build on heat release from recent thermodynamic analysis

◦ Integrate improved heat source models into cascading failure simulations

➢Demonstrate and publish practical methods to assess safety risks in larger systems

Lithium-Ion Battery Calorimetry Workshops (with full safety team)

◦ Set up website for sharing and modeling thermal runaway data

➢Example data set from Sandia Battery Abuse Laboratory has now been prepared for this purpose

◦ Schedule first workshop, continue recruiting participants

18



FY2020 Publication Summary

Peer-reviewed Publications

◦ A Kurzawski, L. Torres-Castro, R. Shurtz, J. Lamb, and John Hewson, “Predicting cell-to-cell failure propagation 
and limits of  propagation in lithium-ion stacks,” Proceedings of  the Combustion Institute (2020) 
https://doi.org/10.1016/j.proci.2020.06.270

◦ R. C. Shurtz and J. C. Hewson, "Materials Science Predictions of  Thermal Runaway in Layered Metal-Oxide 
Cathodes: A Review of  Thermodynamics," J. Electrochem. Soc., 167, 090543 (2020) 
https://dx.doi.org/10.1149/1945-7111/ab8fd9.

◦ R. C. Shurtz, "A Thermodynamic Reassessment of  Lithium-Ion Battery Cathode Calorimetry " J. Electrochem. Soc., 
(submitted September 2020).

Presentations

◦ R.C. Shurtz and J.C. Hewson “Modeling Thermal Decomposition of  Metal Oxide Cathodes in Non-Aqueous 
Electrolytes for Prediction of  Thermal Runaway in Lithium-Ion Batteries” 236th ECS Meeting, Atlanta, GA, 
October 17, 2019

Online Tool:

◦ R. C. Shurtz. "Thermodynamic Reaction Heat Calculator for Layered Metal Oxide Cathodes in Organic 
Electrolytes“ (2020) https://www.sandia.gov/ess-ssl/thermodynamic-web-calculator/

19

https://doi.org/10.1016/j.proci.2020.06.270
https://dx.doi.org/10.1149/1945-7111/ab8fd9
https://www.sandia.gov/ess-ssl/thermodynamic-web-calculator/


Project Contacts20

THANK YOU

▪ Funded by the U.S. Department of Energy, Office of Electricity, Energy Storage program. Dr. Imre Gyuk,
Program Director.

▪ Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

For questions about this presentation, contact Randy Shurtz: rshurtz@sandia.gov

For further details pertaining to thermal runaway modeling, see the following presentations and posters:

▪ Thermal Analysis to Mitigate Cascading Propagation of Lithium-Ion Cell Stacks (presentation by John Hewson)

▪ Mitigation of Failure Propagation Through Active Cooling: A Model Based Experimental Design (presentation by
Loraine Torres-Castro)

▪ Predicting Thermal Responses for Actively Cooled Designs Following Thermal Runaway (poster by Randy Shurtz)

▪ High-Temperature Kinetics of Thermal Runaway Reactions (poster by Andrew Kurzawski)

mailto:rshurtz@sandia.gov

