Material Scienc®ased
Predictions of Singi€ell
Thermal Failures

DOE Office of Electricity Peer Review: September 30, 2020

Randy Shurtz, John Hewson, Andréuwrzawskj Loraine TorrefLastro

Sandia National Laboratories

Fire Science and Technology, Power Sources Research and Development
SAND202010026 C

-_— I I I I ° E HIE ﬁhlv MM h‘!%%

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energyds National Nuc
Administration under contract DE -NA0003525.



> | Overview of Thermal Runaway Modeling
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0 Heat source terms in legacy thermal runaway models have limitations §/$ S ormat cele -
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U Outdated with respect to current battery materials \b £V Battery Pack 1005-
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U Gain ability to forecast safety characteristics in the early stages of materials selec :
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Energy Storage Strategic Plan
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+ I Thermal Runaway Modeling Objectives

600
2 500
=1
© 400
i
£
S 300

Predict thermal runaway behavior in large systemscétulti =

100{ |}

T e r

0 1 publication accepted in FY2020

--- TC1Sim
—— TC1Exp
TC 2 Sim

TC 2 Exp
--- TC3Sim

—— TC 3 Exp
--- TC6 Sim
—— TC 6 Exp
-=--= TC7Sim

—— TC 7 Exp
--- TC 10 Sim
—— TC 10 Exp

0 20 40

Develop improved heaburce models for thermal runaway

0 Include proper dependence on material properties, temperature, state of charge
0 Extend to additional electrode materials of commercial interest

o0 1 publication accepted and 1 additional publication submitted in FY2020

Promote effective methods and collaboration in thermal runaway

0 Publish perspectives, models, and tools

U Thermodynamic reaction heat calculator for cathode decomposition posted online in FY2
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0 Set up thermal runaway collaboration workshops (task for full project team)
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s | Motivation: Why Study Thermodynamics of Battery Materials?

Materials science/thermodynamic approach allows predictions of:

I
Variants of layered metal oxide cathodes too numerous for full experimental safety e\‘
Whether a decomposition reaction can occur i

How much heat release can be expected under different conditions ‘

Heat sources from thermodynamics are readily adapted to new materials

Can account for multiple stages of heat release
May also allow kinetic rates in thermal runaway models to be generalized for families of m1



6 | Results: Thermodynamics of Cathode Thermal Runawajpecomposition paths
for de-lithiated LiMO, I

Layered metal oxide cathode decomposition

A Published database of 36 formation enthalpies compiled ‘
from over 42 literature sources for cathode materials |
A Yields upfront predictions of heat release for a whole class .
of Li,MO,cathode materials with electrolytes O,
A Existing or proposed compositions |
A Excetbased calculator released online |
MO, LIMQ, + O, R6
A Simplified web calculator under development : |
> R3A MO ‘
R. C.Shurtzand J. C. Hewson,).Electrochem Soc.,167, 090543 (2020) https://dx.doi.org/10.1149/1945 -7111/ab8fd9

R. C.Shurtz. "Thermodynamic Reaction Heat Calculator for Layered Metal Oxide Cathodes in Organic Electrolytes."

https://www.sandia.gov/ess-ssl/ithermodynamic-web- calculator/ M = Ni, Co, Mn, Al as well as mixtures (NMC, NCA, etc.
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Results: Thermodynamics of Solvent Oxidation
Spontaneous processes have ned&ive
Solvent oxidation has strong effects on IG=IH-T!S |
Cathode heat release
Gas emissions from decomposing batterie
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R. C.Shurtzand J. C. Hewson,J.Electrochem Soc. 167, 090543 (2020) https://dx.doi.org/10.1149/1945 -7111/ab8fd9
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s | Results: Effect of Pressure on Solvent Decomposition
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R. C.Shurtzand J. C. Hewson,).Electrochem Soc.,167, 090543 (2020) https://dx.doi.org/10.1149/1945 -7111/ab8fd9
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o | Results: Combined Effects of Metal Oxide Decomposition
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10 I Results: Combined Effects of Metal Oxide Decomposition
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¢  NMC requires solvent oxidation to

9 complete MO formation

N Provides explanation for existing

) measurements of heated oxide species
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R. C.Shurtzand J. C. Hewson,).Electrochem Soc.,167, 090543 (2020) https://dx.doi.org/10.1149/1945 -7111/ab8fd9
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11 | Results: FullOxidation Predictions Consistent with Calorimetry
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Example: LNiy 3Mn, 3£0, 30, (NMC 1:1:1)
R4 (blue line) is initial production of LIM,O,

A Lithiatedspinel created w/o oxygen production

R. C. Shurtz, "A Thermodynamic Reassessment of Lithiunton Battery Cathode Calorimetry " J.Electrochem Soc.(submitted September 2020).



12 | Results: FullOxidation Predictions Consistent with Calorimetry

R. C. Shurtz, "A Thermodynamic Reassessment of Lithiunton Battery Cathode Calorimetry " J.Electrochem Soc.(submitted September 2020).
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