An Evaluation of the Economic and Resilience Benefits of a Microgrid in Northampton, Massachusetts

Dexin Wang, Di Wu, Patrick Balducci, Kendall Mongird, Vanshika Fotedar, and Robert Dahowski

Evaluate the economic and resilience benefits of a proposed microgrid (MG) in Northampton, MA Distributed energy resources at three facilities:

- Cooley Dickinson Hospital (CDH)
- o Three 800 kW diesel generators (DGs)
- Two CHP biomass (incapable of operating during outages)
 441 kW/441 kWh battery (to be installed)
- o 386 kW PV (to be installed)
- Northampton Department of Public Works (DPW)
 0 40 kW DG
- Smith Vocational & Agricultural High School (SVAHS)
 155 kW DG
 - o 106 kW PV

PROJECT OVERVIEW

ECONOMIC ANALYSIS

Benefits obtained with optimal battery operating schedule

- Objective: maximize benefit
- Constraints: operational constraints & grid service requirement Value streams:
- National Grid demand charge reduction
- National Grid demand response program participation
- ISO-NE installed capacity tag reduction
- Energy purchase reduction through PV array production
- Energy arbitrage exploiting time of use pricing
- PV renewable energy credits (RECs)

Costs:

- Battery energy storage system (BESS) & Solar PV
- Initial investment & Major maintenance and replacement

\$2.5 million present value benefits (1.16 ROI)

RESILIENCY ANALYSIS

Investigate survival rate in 10000 simulated random outages

System Connectedness

- No microgrid
- Limited microgrid
- Full microgrid

Seasons:

- Summer: June October
- Winter: November May

Diesel generator failure probabilities

- Fail to start: a DG fails to start up on demand
- Fail to load: a DG fails to pick up load after started
- Fail to run: a DG fails in the second hour of serving load or later

Key findings:

- All sites are more likely to survive when a microgrid is formed
- Survival rates are low in 14-day outages due to fuel shortage
- Additional PV at CDH significantly improves survivability
 - Especially in outages with longer durations, because it helps conserve fuel

CONCLUSIONS

This project evaluated the economic and resilience benefits of a microgrid proposed in Northampton, MA that would link the Northampton DPW, CDH, and SVAHS. An innovative evaluation framework was proposed to capture economic benefits from multiple grid services in grid-connecting mode and resilience benefits in islanding mode. It was found that

- With a cost of \$2.2 million, the BESS and the 386-kW solar array are estimated to generate \$2.5 million in present value benefits over a 20-year life, resulting in a return on investment (ROI) of 1.16.
- With the PV array installed at CDH, forming a microgrid helps increase survivability of all facilities against an outage.

Acknowledgements

This work is supported by the U.S. Department of Energy (DOE) Office of Electricity under contract No. DE-AC05-76RL01830. We are particularly thankful to Dr. Imre Gyuk, manager of the Energy Storage Program of DOE, Office of Electricity for his leadership and financial support.

U.S. DEPARTMENT OF ENERGY BATTELLE

PNNL is operated by Battelle for the U.S. Department of Energy

9/15/2020 PNNL-SA-156236

For additional information, contact:

Phone: (509) 372-6231

