Background

Zn/MnO₂ alkaline batteries have been identified as a viable option for the modernization of grid scale energy storage due to their projected cost (~$50/kWh), scalability, and safer components when compared to non-aqueous alternatives. For this system to reach its maximum capacity, the full Mn⁴⁺/²⁺ redox couple must be reversible over thousands of cycles with high mass loading. The following reaction has been proposed to occur in alkaline systems:

\[
\text{MnO}_2 + x\text{H}_2\text{O} + xe^- \leftrightarrow \text{MnO}_2-(\text{OH})_x + x\text{OH} \quad \text{where } x = 2
\]

Recently, success in rechargeability > 3000 cycles has been demonstrated with the incorporation of various electrode constituents which alter the fundamental discharge and charge process and form the δ-MnO₂ (birnessite) on the first cycle which is identified as the reversible reaction.

δ-MnO₂ – Bi₂O₃ system

We use K-MnO₂ as a model material to answer the following questions:

1. What is the role of Bi₂O₃ in the electrode
2. What is the mechanism for MnO₂ reversibility

Mechanistic Insight into δ-MnO₂ – Bi₂O₃ cyclability

X-ray absorption spectroscopy (XAS) provides oxidation state change and local structure

- Fully intact batteries are cycled at Brookhaven National Lab’s NSLS-II QAS beamline
- Both the Mn K- and Bi L₃ edge were scanned with over 1 cm² electrode area in fluorescence mode
- Limited Mn redox without Bi₂O₃ present, full reduction to Mn²⁺ when present
- Second plateau shows initial Mn redox slow then quickly converts above Mn³⁺
- Bi is partially redox active but does not fully convert to Bi metal
- Bi-O from [BiO]₃⁻ cluster is present even at full discharge indicating Bi³⁺ is present, possibly an amorphous or a dissolved species

Martínez et al. The Journal of Physical Chemistry 2016, 120, 1505

Acknowledgements

This work was supported by the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability, Dr. Imre Gyuk, Energy Storage Program Manager. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02- 06CH11357.